HyperPath: a new journey planner for dynamic routing on transit networks

Guido.Gentile@UniRoma1.it

SISTeMA srl
Sapienza Università di Roma
Phenomena, ingredients and topics of the research

- Route choice of passengers on multimodal networks
 - strategies and hyperpaths
 - mixed schedule-based and frequency-based lines

- Dynamic aspects
 - within day / time dimension
 - real-time / on-line information
 - en-route adaptive route choice
 - performances and reliability / line headway distributions

- ITS to support passenger trips
 - avl for information besides operation
 - journey planners
 - point-to-point passenger navigation
Features and functionalities for a new journey planner

- Multimodal transit networks - a mixture of service types
 - scheduled based - reliable arrival times at stops of single runs
 - frequency based - passengers perceive line headway distribution at stops
 - continuous service connections
- Pedestrian network - different approach depending on available data
 - implicit connection based on geographic distance relation
 - fast pedestrians to reproduce access to main transit stops
 - topology explicitly introduced
- Transit travel times - different approach depending on available data
 - based on commercial speeds
 - based on the road travel time plus a dwelling time at stops
 - based on historic avl data that are time-varying for each section
 - based on the programmed schedule
Features and Functionalities for a new journey planner

- Regularity besides frequency
 - simulate the effect on waiting times of more regular headway distribution

- Fare structure
 - kilometric fees for each line
 - boarding fees for each line stop
 - zone based (origin-destination) matrix for more complex fares

- Passenger strategies
 - passenger at a transit stop board the first arriving carrier of an attractive line set
 - common (partially overlapping) lines
 - alternative paths (hyperpath)
Features and Functionalities for a new journey planner

- **Multiple modes**
 - link attributes stratified by mode (speeds, closures, tolls, costs)

- **Travelling preferences**
 - value of time, multiplier of walking and waiting times, additional costs for transfers and change of hierarchy
 - bundled in a user class, e.g. fast, simple, little walking, low cost
 - personalized for each route request
 - sensitivity analysis to look for alternative routes with a similar cost

- **Park and Ride**
 - optimal routing of intermodal trips through commuting terminal
 - time-varying delays and costs of each parking facility
Features and Functionalities of the software HyperPath

- Actual trip terminals and geocoding
 - origin and destination typed in a free text Google style; street addresses or point of interests
 - clicking a point on the map and apply reversed geocoding
 - street database and proprietary module or google api, for address disambiguation
- Precise connection to the transport network
 - implicit connection of actual origin and destination points to multiple nodes of the network
- Access and egress alternatives
 - with different speed and cost of travelling along implicit direct link
- Waypoints
 - set of intermediate points with the corresponding duration of the stops
Features and Functionalities of the software HyperPath

- Fast algorithm - computing times vary less than linearly with the number of nodes
 - flexible bucket list
 - A* like speed-up
 - parallel computation of different requests
 - real time computation using the most recent available information

- Dynamic shortest paths
 - dynamic link and line attribute piece-wise constant or linear
 - shortest hyperpath natively dynamic
 - estimated/forecasted performances that will occur at the actual time when the user will travel on each link of the network
 - requires to ask the user also for his/her arrival time to the destination
Features and Functionalities of the software HyperPath

- **Road network**
 - navigation details: turn prohibitions and access limitations, in addition to speed and intersection delay for each directional link, mode specific tolls and costs
 - truck routing attributes: tortuosity, steepness, bridges, tunnels, left and right turns at intersections, urban context, change of street hierarchy level, major roads

- **Import formats**
 - road network from Navteq or TeleAtlas
 - transit network from Google, Visum or Maior

- **Flexible map projections**
 - background images
 - network data (lines, stops)
 - proposed route
Features and Functionalities for a new journey planner

- Route description
 - textual format, as a sequence of actions
 - graphical format, as a sequence of polylines
 - link by link statistics

- Features of the graphical interface
 - bidirectional clicks from textual to graphical outputs
 - line offset on the map to avoid overlapping segments
 - attributes on the map, selected links as in a web gis
 - hierarchical text list of actions for hyperpaths
 - comprehensive log
 - multilanguage
Features and Functionalities for a new journey planner

- **System access**
 - web from computer
 - smart phones dedicated pages

- **Additional features**
 - OD matrix estimation using historic set of paths requested
 - traffic map with los as a background

- **Traffic events**
 - manually introduce road closures and speed reductions
 - events are taken into account in real-time
HyperPath: a new journey planner for dynamic routing on transit networks

Guido Gentile

06/10/2011
Algorithm for mixed frequency and scheduled lines

function MIXL(m, o, d, τ, ν)
 ν = ν + 1
 x₀ = 0
 z₀ = τ
 s₀ = -1 \quad (-1 \text{ indicates that node } i \text{ is the destination})
 q₀ = 0
 y₀ = μ \cdot x₀ + γ \cdot VT_m \cdot L_{od} / VA_m \quad (VT_m \text{ value of time, } VA_m \text{ average speed})
 ν₀ = ν
 B = \{d\}
 j = d

do until j = o or B = ∅
 B = B - \{j\}
 for each α \in BS(j)
 i = TL(α)
 (t, c, k) = APF(α, m, q₀, z₀, ν₀)
 if α \in AB and ℓ(j) \in FB and ν_i = ν then c = 0
 if ν_i < ν or x_i > x_j + c then
 if α \in AB and ℓ(j) \in FB and ν_i = ν then
 x_i = x_j + c
 z_i = z_j / t
 H_i = 1 / (1 / H_j + 1 / t)
 x_i = x_i \cdot H_i
 z_i = z_i \cdot H_i
 s_i = -2 \quad (-2 \text{ indicates that the successive of node } i \text{ is a hyperarc})
 end if
 end if
 end for
 if α \in AB and ℓ(j) \in FB then
 H_i = t
 x_i = x_j + c
 z_i = z_j - t
 s_i = a
 ν_i = ν
 end if
 if i \in B then
 B = B - \{i\}
 y_i = μ \cdot x_i + γ \cdot VT_m \cdot L_{oi} / VA_m
 B = B + \{i\}
 end if
end do
next α
j = arg\min\{y_i : i \in B\}
loop
end function
Arc Performance Function
mode coefficients

Each mode m is specified through its generalized cost coefficients:

- VT_m: value of time
- VM_m: value of money
- VD_m: value of distance
- CR_m: riding time coefficient
- CP_m: walking time coefficient
- CW_m: waiting time coefficient
- VW_m: walking speed
- VA_m: average speed
- VL_m: speed limit on connections
- OF_m: occupancy factor on connections
- HD_m: perceived delay for change of link hierarchy on connections
Let \mathcal{F} be the set of transit lines. Each line is characterized by the following features:

- $f(i) \in \mathcal{F}$: line associated with line node $i \in \mathcal{N}$
- $R(a) \subseteq AR$: sequence of support arcs associated with on-board arc $a \in AO$
- VC_t: commercial speed of line $t \in \mathcal{F}$
- KF_t: kilometric fee of line $t \in \mathcal{F}$
- BF_t: boarding fee of line $t \in \mathcal{F}$
- HW_t: expected headway of line $t \in \mathcal{F}$
- RG_t: regularity of line $t \in \mathcal{F}$; 0 means deterministic headway, 1 means exponential, > 1 means higher regularity (∞ means again deterministic headway)
- NR_t: number of runs of line $t \in \mathcal{F}$
- ST_{ik}: schedule time of the k-th run of line $f(i)$ at (stop) node $i \in \mathcal{N}$, $k \in [1, NR_{t(0)}]$
- RV_{ik}: validity (a set of days) of the k-th run of line $f(i)$ at (stop) node $i \in \mathcal{N}$, $k \in [1, NR_{t(0)}]$
- $PR_{ik} \in [0, NR_{t(0)}]$: index of the first run preceding time $\tau_h = h \cdot \Delta t$, with $h \in [0, n]$, for line $f(i)$ at stop node $i \in \mathcal{N}$; 0 means no preceding run
- SV_{i}: validity (a set of days) of line node $i \in \mathcal{N}$
- RT_a: riding time of line $f(TL(a)) \in \mathcal{F}$ along arc $a \in AL$; 0 means no riding time available
- HM: maximum headway (for all lines)
Arc Performance Function
road and connection arcs

\[
\text{function} \ (t, c, k) = \text{APF}(a, m, q, z) \\
\quad i = TL(a) \\
\quad j = HD(a) \\
\quad \text{if} \ a \in AR \ \text{then} \\
\quad \quad \text{if} \ VL_m > 0 \ \text{and} \ VL_m \leq 1 \ \text{then} \\
\quad \quad \quad t = L_a / (VL_m \cdot V_a) + \delta_a \\
\quad \quad \text{else if} \ VL_m > 1 \ \text{and} \ VL_m < V_a \ \text{then} \\
\quad \quad \quad t = L_a / VL_m + \delta_a \\
\quad \quad \text{else} \\
\quad \quad \quad t = L_a / V_a + \delta_a \\
\quad \text{end if} \\
\quad c = VT \cdot t + VM_m \cdot MTam / OF_m + VD_m \cdot L_a + OCam / OF_m \\
\quad \text{if} \ HC_a = 1 \ \text{then} \ c = c + VT \cdot HD_m \\
\quad k = 0 \\
\quad \text{else if} \ a \in AC \ \text{then} \\
\quad \quad \text{if} \ VL_m > 0 \ \text{and} \ VL_m \leq 1 \ \text{then} \\
\quad \quad \quad t = L_a / (VL_m \cdot V_a) + \delta_a \\
\quad \quad \text{else if} \ VL_m > 1 \ \text{and} \ VL_m < V_a \ \text{then} \\
\quad \quad \quad t = L_a / VL_m + \delta_a \\
\quad \quad \text{else} \\
\quad \quad \quad t = L_a / V_a + \delta_a \\
\quad \text{end if} \\
\quad c = VT \cdot t + VD_m \cdot L_a \\
\quad k = 0
\]
else if \(a \in AO \) then
 if \(q > 0 \) then
 \[t = ST_{jq} - ST_{iq} \]
 else if \(RT_a > 0 \) then
 \[t = RT_a \]
 else if \(VC_{t(i)} > 0 \) then
 \[t = \sum_{b \in R(a)} L_b / VC_{t(i)} \]
 else
 \[t = \sum_{b \in R(a)} L_b / V_b + \delta_b \]
end if

\[c = VT_m \cdot CR_m \cdot t + VM_m \cdot \sum_{b \in R(a)} L_b \cdot KF_{t(i)} + VD_m \cdot \sum_{b \in R(a)} L_b + \sum_{b \in R(a)} L_b \cdot KC_{t(i)} \]
\[k = q \]
else if \(a \in AB \) then
 if \(q > 0 \) then
 if \(\ell(j) \in SB \) then
 \(t = 0 \)
 else (if \(\ell(j) \in FB \) then)
 \(h = q + 1 \), do until \(\nu \in RV_{jh} \) or \(h > NR_{\ell(j)} \) : \(h = h + 1 \) loop
 if \(h > NR_{\ell(j)} \) then \(t = 0.5 \cdot HM \) else \(t = 0.5 \cdot (ST_{jh} - ST_{jq}) \)
 end if
 else
 \(t = 0.5 \cdot HW_{\ell(j)} \)
 end if
else
 \(t = 0.5 \cdot HW_{\ell(j)} \)
end if
if \(RG_{\ell(j)} > 0 \) then \(t = t \cdot (1 + 1 / RG_{\ell(j)}) \)
\(c = VT_m \cdot CW_m \cdot t \)
\(k = 0 \)
else if \(a \in AA \) then

\[\text{if } NR_{\ell(i)} > 0 \text{ and } \nu \in SV_i \text{ then} \]

\[h = 1 + z \Delta \tau \] (note the integer division “\(\backslash \)"")

\[k = PR_{\ell(i)}, \text{ do until } (ST_{ik} \leq z \text{ and } \nu \in RV_{ik}) \text{ or } k = 0: k = k - 1 \text{ loop} \]

else

\[k = 0 \]

end if

if \(k > 0 \) then

\[t = z - ST_{ik} \]

if \(\ell(i) \in SB \) then

\[c = VT_m \cdot CW_m \cdot t + VM_m \cdot BF_{\ell(i)} + BC_{\ell(i)} + TC_m \]

else (if \(\ell(i) \in FB \) then)

\[c = VM_m \cdot BF_{\ell(i)} + BC_{\ell(i)} + TC_m \]

end if

else if \(\nu \notin SV_i \) or \(NR_{\ell(i)} > 0 \) then

\[t = \infty \]

\[c = \infty \]

else

\[t = 0 \]

\[c = VM_m \cdot BF_{\ell(i)} + BC_{\ell(i)} + TC_m \]

end if